资源类型

期刊论文 454

会议信息 1

年份

2023 35

2022 34

2021 35

2020 19

2019 19

2018 12

2017 26

2016 17

2015 14

2014 18

2013 26

2012 15

2011 22

2010 29

2009 17

2008 35

2007 46

2006 8

2005 8

2004 5

展开 ︾

关键词

温度控制 3

低温SOFC 2

大气温度 2

技术路线 2

模糊控制 2

温度 2

温度分布 2

粒子群优化 2

粒子群优化算法 2

高温气冷堆 2

(美国) 核管理委员会 1

10kV高压电力电缆 1

Au/Ti双功能催化剂 1

CCD 1

CCD影像 1

Cu(In 1

D1 turnover / photoinhibition / photoprotection / photosynthesis / tomato / xanthophyll cycle 1

Fe、Co、Ru 碳化物 1

Ga)Se2 1

展开 ︾

检索范围:

排序: 展示方式:

Response surface regression analysis on FeCrBSi particle in-flight properties by plasma spray

Runbo MA,Lihong DONG,Haidou WANG,Shuying CHEN,Zhiguo XING

《机械工程前沿(英文)》 2016年 第11卷 第3期   页码 250-257 doi: 10.1007/s11465-016-0401-2

摘要:

This work discusses the interactive effects between every two of argon flow rate, voltage, and spray distance on in-flight particles by plasma spray and constructs models that can be used in predicting and analyzing average velocity and temperature. Results of the response surface methodology show that the interactive effects between voltage and spray distance on particle in-flight properties are significant. For a given argon flow rate, particle velocity and temperature response surface are obviously bending, and a saddle point exists. With an increase in spray distance, the interactive effects between voltage and argon flow rate on particle in-flight properties appear gradually and then weaken. With an increase in voltage, the interactive effects between spray distance and argon flow rate on particle in-flight properties change from appearing to strengthening and then to weakening.

关键词: particle velocity     particle temperature     interactive effects     response surface    

Effects of ambient temperature on regulated gaseous and particulate emissions from gasoline-, E10- and

Rencheng Zhu, Jingnan Hu, Liqiang He, Lei Zu, Xiaofeng Bao, Yitu Lai, Sheng Su

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1306-1

摘要: Abstract • Emissions from two sedans were tested with gasoline, E10 and M15 at 30°C and -7°C. • As the temperature decreased, the PM, PN and BC emissions increased with all fuels. • Particulate emissions with E10 and M15 were more sensitive to the temperature. • The PN and BC generated during cold start-up dominated those over the WLTC. Ambient temperature has substantial impacts on vehicle emissions, but the impacts may differ between traditional and alcohol gasolines. The objective of this study was to investigate the effects of temperature on gaseous and particulate emissions with both traditional and alcohol gasoline. Regulated gaseous, particle mass (PM), particle number (PN) and black carbon (BC) emissions from typical passenger vehicles were separately quantified with gasoline, E10 (10% ethanol and 90% gasoline by volume) and M15 (15% methanol and 85% gasoline by volume) at both 30°C and -7°C. The particulate emissions with all fuels increased significantly with decreased temperature. The PM emissions with E10 were only 48.0%–50.7% of those with gasoline at 30°C but increased to 59.2%-79.4% at -7°C. The PM emissions with M15 were comparable to those with gasoline at 30°C, but at -7°C, the average PM emissions were higher than those with gasoline. The variation trend of PN emissions was similar to that of PM emissions with changes in the fuel and temperature. At 30°C, the BC emissions were lower with E10 and M15 than with gasoline in most cases, but E10 and M15 might emit more BC than gasoline at -7°C, especially M15. The results of the transient PN and BC emission rates show that particulate emissions were dominated mainly by those emitted during the cold-start moment. Overall, the particulate emissions with E10 and M15 were more easily affected by ambient temperature, and the advantages of E10 and M15 in controlling particulate emissions declined as the ambient temperature decreased.

关键词: Particle mass     Particle number     Black carbon     Alcohol gasoline     Low temperature    

含高温储能系统的微电网经济运行研究

罗 毅,张丽娟

《中国工程科学》 2015年 第17卷 第1期   页码 74-80

摘要:

高温储能系统以其高效、环保、节能等优点而有着广泛的应用前景,含高温储能系统的微电网经济运行日益引起关注。文中对高温储能系统、风机、光伏电池、蓄电池、微型燃气轮机以及燃料电池组成的微电网进行分析研究,在分时电价以及微网并网运行的环境下,基于各电源功率特性,建立了高温储能系统模型及微网经济运行模型。运用改进免疫粒子群算法进行模型求解,现场应用验证了其有效性,结果表明文中方法可使微网动态运行整体达到最优,高温储能系统参与热负荷供应,可以节省成本,具有显著的经济效益。

关键词: 高温储能系统;微电网;经济运行;优化调度;免疫粒子群算法    

Surface modification of titanium dioxide for electrophoretic particles

PENG Xuhui, LE Yuan, BIAN Shuguang, LI Woyuan, WU Wei, DAI Haitao, CHEN Jianfeng

《化学科学与工程前沿(英文)》 2007年 第1卷 第4期   页码 338-342 doi: 10.1007/s11705-007-0061-1

摘要: To prepare stable electrophoretic ink (E Ink) needs color particles to be uniformly dispersed in the organic medium. Thus, t-he modification of inorganic particle surface is required. In this paper, Titanium dioxide modified by alumina has been studied. The surface composition and structures of modified particles have been characterized by X-ray photoelectron spectrometer (XPS), X-ray diffractometer (XRD) and Fourier transform infrared spectrometer (FT-IR). The dispersibility and electrophoretic mobility of these particles in tetrachloroethylene (TCE) have been investigated by laser particle size analyzer, static sedimentation and electrophoretic instrument. Effects of temperature, pH value and stirring rate on the dispersibility and the charge property of samples have been discussed. The results indicate the settle time of modified TiO can last 120 h with the response time of 35 s under the optimized modifying conditions, in which temperature is 85°C–90°C, pH is 8–9 and stirring rate is 800 r · min. The dispersibility and electrophoretic mobility have been significantly improved, which means that the modified TiO is suitable for electrophoretic ink particles.

关键词: inorganic particle     temperature     tetrachloroethylene     transform     optimized modifying    

Influence of mineral transformation on emission of particulate matters during coal combustion

LIU Xiaowei, XU Minghou, YU Dunxi, GAO Xiangpeng, CAO Qian, HAO Wei

《能源前沿(英文)》 2007年 第1卷 第2期   页码 213-217 doi: 10.1007/s00000-007-0028-4

摘要: Combustion of pulverized coal was studied in a drop tube furnace to understand coal mineral properties with the emission of particulate matters (PM). Experimental conditions were selected as follows: coal particle size was smaller than 63 μm; reaction temperature was 1 100vH, 1 250vH and 1 400vH respectively; oxygen content was 20% and 50% respectively. PM was collected with a 13-stagelow pressure impactor (LPI) having an aerodynamic cut-off diameter ranging from 10.0 μm to 0.03 μm for a size-segregated collection. Such properties as concentration, particle size distribution and elemental composition of PM were investigated. The experimental results indicate that the emitted PM has a bimodal distribution having two peaks around 4.0 μm and 0.1 μm. Increasing temperature leads to the formation of more PM; varied oxygen content leads to much change of emitted PM. PM was also subjected to XRF analysis to quantify the elemental composition. The results show that PM of 0.1 μm is rich in sulfates. Meanwhile, SiO and AlO are prevalent in PM of 4.0 μm, which means that the last peak around 4.0 μm is mainly aluminosilicate salts.

关键词: prevalent     Combustion     cut-off diameter     temperature     particle    

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 897-908 doi: 10.1007/s11705-021-2127-x

摘要: Catalyst particle shapes and pore structure engineering are crucial for alleviating internal diffusion limitations in the hydrodesulfurization (HDS)/hydrodenitrogenation (HDN) of gas oil. The effects of catalyst particle shapes (sphere, cylinder, trilobe, and tetralobe) and pore structures (pore diameter and porosity) on HDS/HDN performance at the particle scale are investigated via mathematical modeling. The relationship between particle shape and effectiveness factor is first established, and the specific surface areas of different catalyst particles show a positive correlation with the average HDS/HDN reaction rates. The catalyst particle shapes primarily alter the average HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. An optimal average HDS/HDN reaction rate exists as the catalyst pore diameter and porosity increase, and this optimum value indicates a tradeoff between diffusion and reaction. In contrast to catalyst particle shapes, the catalyst pore diameter and the porosity of catalyst particles primarily alter the surface HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. This study provides insights into the engineering of catalyst particle shapes and pore structures for improving HDS/HDN catalyst particle efficiency.

关键词: hydrodesulfurization     hydrodenitrogenation     particle shape     pore structure    

A novel light fluctuation spectrum method for in-line particle sizing

Shouxuan QIN, Xiaoshu CAI, Li MA

《能源前沿(英文)》 2012年 第6卷 第1期   页码 89-97 doi: 10.1007/s11708-012-0176-z

摘要: This paper discusses two problems in in-line particle sizing when using light fluctuation method. First, by retrieving the ratio of particle concentrations at different time, the intensity of incident light is obtained. There exists narrow error between the calculated and pre-detected value of the intensity of incident light. Secondly, by combining spectrum analysis with Gregory’s theory, a multi-sub-size zone model is proposed, with which the relationship between the distribution of turbidity and the particle size distribution (PSD) can be established, and an algorithm developed to determine the distribution of turbidity. Experiments conducted in the laboratory indicate that the measured size distribution of pulverized coal conforms well with the imaging result.

关键词: in-line measurement     particle size distribution (PSD)     incident light intensity     particle concentration     light fluctuation    

Independent cover meshless particle method for complex geotechnical engineering

Jianqiu WU, Yongchang CAI

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 515-526 doi: 10.1007/s11709-017-0428-4

摘要: A new Independent Cover Meshless Particle (ICMP) method is proposed for the analysis of complex geotechnical engineering. In the ICMP method, the independent rectangular cover regardless of the shape of the analysis model is employed as the influence domain of each discrete node, the general polynomial is employed as the meshless interpolation function of the independent nodal cover, and the Cartesian Transformation Method (CTM) is used for the numerical integration of the nodal covers cut by material interfaces, joints, cracks and faults. The present method has a simple formulation and a low computational cost, and is easy for the numerical analysis and modeling of complex geotechnical engineering. Several typical numerical examples are presented to demonstrate the accuracy and robustness of the proposed method.

关键词: meshless method     particle method     independent cover     CTM     geotechnical engineering    

Microdamage study of granite under thermomechanical coupling based on the particle flow code

《结构与土木工程前沿(英文)》   页码 1413-1427 doi: 10.1007/s11709-023-0953-2

摘要: The thermomechanical coupling of rocks refers to the interaction between the mechanical and thermodynamic behaviors of rocks induced by temperature changes. The study of this coupling interaction is essential for understanding the mechanical and thermodynamic properties of the surrounding rocks in underground engineering. In this study, an improved temperature-dependent linear parallel bond model is introduced under the framework of a particle flow simulation. A series of numerical thermomechanical coupling tests are then conducted to calibrate the micro-parameters of the proposed model by considering the mechanical behavior of the rock under different thermomechanical loadings. Good agreement between the numerical results and experimental data are obtained, particularly in terms of the compression, tension, and elastic responses of granite. With this improved model, the thermodynamic response and underlying cracking behavior of a deep-buried tunnel under different thermal loading conditions are investigated and discussed in detail.

关键词: thermomechanical coupling effect     granite     improved linear parallel bond model     thermal property     particle flow code    

Study on direct measurement method of vorticity from particle images

RUAN Xiaodong, FU Xin, YANG Huayong

《能源前沿(英文)》 2007年 第1卷 第4期   页码 408-412 doi: 10.1007/s11708-007-0059-1

摘要: To overcome the shortcomings of conventional methods for vorticity measurement, a new direct measurement of vorticity (DMV) method extracting vorticity from particle images was proposed. Based on the theory of fluid flow, two matc

关键词: conventional     vorticity measurement     particle     DMV     theory    

Analysis of molten metal spreading and solidification behaviors utilizing moving particle full-implicit

《能源前沿(英文)》 2021年 第15卷 第4期   页码 959-973 doi: 10.1007/s11708-021-0753-0

摘要: To retrieve the fuel debris in Fukushima Daiichi Nuclear Power Plants (1F), it is essential to infer the fuel debris distribution. In particular, the molten metal spreading behavior is one of the vital phenomena in nuclear severe accidents because it determines the initial condition for further accident scenarios such as molten core concrete interaction (MCCI). In this study, the fundamental molten metal spreading experiments were performed with different outlet diameters and sample amounts to investigate the effect of the outlet for spreading-solidification behavior. In the numerical analysis, the moving particle full-implicit method (MPFI), which is one of the particle methods, was applied to simulate the spreading experiments. In the MPFI framework, the melting-solidification model including heat transfer, radiation heat loss, phase change, and solid fraction-dependent viscosity was developed and implemented. In addition, the difference in the spreading and solidification behavior due to the outlet diameters was reproduced in the calculation. The simulation results reveal the detailed solidification procedure during the molten metal spreading. It is found that the viscosity change and the solid fraction change during the spreading are key factors for the free surface condition and solidified materials. Overall, it is suggested that the MPFI method has the potential to simulate the actual nuclear melt-down phenomena in the future.

关键词: molten metal spreading     solidification     particle method     severe accident     fuel debris     decommissioning    

Particle size distribution and shape control of Au nanoparticles used for particle gun

S. Kida, M. Ichiji, J. Watanabe, I. Hirasawa

《化学科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 60-64 doi: 10.1007/s11705-013-1313-x

摘要: Au nanoparticles are expected for the media to transfer genes into plants. However, the control of particle size distribution (PSD) and shape of Au nanoparticles is too difficult to design and prepare particles with suitable quality for the gene supporting media. Reduction crystallization experiments were performed in aqueous solution in order to clarify the effect of feeding conditions such as feeding profile, feeding rate, and feeding amount on PSD and shape of Au nanoparticles. Ascorbic acid (AsA) was selected as a reducing agent because it is safe for plants. Au particles of 50 nm, 50–200 nm, and 150–400 nm were obtained in batch operation, single-jet, and double-jet, respectively. Moreover, in single-jet and double-jet, the mean size of the obtained Au particles increases with the decrease of feeding rate or the increase of feeding amount. It is concluded that PSD of Au nanoparticles can be controlled in the range of 50–400 nm by changing feeding conditions of AsA and HAuCl aqueous solution.

关键词: reduction crystallization     particle size distribution     gene transferring media    

Effect of adjusted mesoscale drag model on flue gas desulfurization in powder-particle spouted beds

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 909-920 doi: 10.1007/s11705-021-2100-8

摘要: An energy minimum multiscale model was adjusted to simulate the mesoscale structure of the flue gas desulfurization process in a powder-particle spouted bed and verified experimentally. The obtained results revealed that the spout morphology simulated by the adjusted mesoscale drag model was unstable and discontinuous bubbling spout unlike the stable continuous spout obtained using the Gidaspow model. In addition, more thorough gas radial mixing was achieved using the adjusted mesoscale drag model. The mass fraction of water in the gas mixture at the outlet determined by the heterogeneous drag model was 1.5 times higher than that obtained by the homogeneous drag model during the simulation of water vaporization. For the desulfurization reaction, the experimental desulfurization efficiency was 75.03%, while the desulfurization efficiencies obtained by the Gidaspow and adjusted mesoscale drag models were 47.63% and 75.08%, respectively, indicating much higher accuracy of the latter technique.

关键词: adjusted mesoscale drag model     particle image velocimetry     water vaporization     desulfurization reaction     numerical simulation    

Effect of particle size on coal char----NO reaction

Xiumin JIANG, Xiangyong HUANG, Jiaxun LIU, Chaoqun ZHANG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 221-228 doi: 10.1007/s11708-011-0146-x

摘要: Surface nitrogen complex formation upon reaction of coal char with NO at 600°C was studied by X-ray photoelectron spectroscopy. Particle size had a noticeable effect on the magnitude of changes, which was observed on the surface of the coal char in the nitrogen functional group. The surface increased its -NO, pyridine-N-oxide, and -NO functional group contents with a decrease in particle size. The chemisorption processes of NO molecules on the char were simulated using the ab initio Hartree–Fock method and density functional theory. Molecular modeling was applied to determine the thermodynamics of the reactions. Mechanisms were proposed to explain the formation of the -NO, pyridine-N-oxide, and -NO functional groups at 600°C.

关键词: NO reduction     chemisorption     particle size     X-ray photoelectron spectroscopy     density functional theory (DFT)    

Crack detection of the cantilever beam using new triple hybrid algorithms based on Particle Swarm Optimization

Amin GHANNADIASL; Saeedeh GHAEMIFARD

《结构与土木工程前沿(英文)》 2022年 第16卷 第9期   页码 1127-1140 doi: 10.1007/s11709-022-0838-9

摘要: The presence of cracks in a concrete structure reduces its performance and increases in the size of cracks result in the failure of the structure. Therefore, the accurate determination of crack characteristics, such as location and depth, is one of the key engineering issues for assessment of the reliability of structures. This paper deals with the inverse analysis of the crack detection problems using triple hybrid algorithms based on Particle Swarm Optimization (PSO); these hybrids are Particle Swarm Optimization-Genetic Algorithm-Firefly Algorithm (PSO-GA-FA), Particle Swarm Optimization-Grey Wolf Optimization-Firefly Algorithm (PSO-GWO-FA), and Particle Swarm Optimization-Genetic Algorithm-Grey Wolf Optimization (PSO-GA-GWO). A strong correlation exists between the changes in the natural frequency of a concrete beam and the crack parameters. Thus, the location and depth of a crack in a beam can be predicted by measuring its natural frequency. Hence, the measured natural frequency can be used as the input parameter of the algorithm. In this paper, this is applied to identify crack location and depth in a cantilever beam using the new hybrid algorithms. The results show that among the proposed triple hybrid algorithms, the PSO-GA-FA and PSO-GWO-FA algorithms are much more effective than PSO-GA-GWO algorithm for the crack detection.

关键词: crack     cantilever beam     triple hybrid algorithms     Particle Swarm Optimization    

标题 作者 时间 类型 操作

Response surface regression analysis on FeCrBSi particle in-flight properties by plasma spray

Runbo MA,Lihong DONG,Haidou WANG,Shuying CHEN,Zhiguo XING

期刊论文

Effects of ambient temperature on regulated gaseous and particulate emissions from gasoline-, E10- and

Rencheng Zhu, Jingnan Hu, Liqiang He, Lei Zu, Xiaofeng Bao, Yitu Lai, Sheng Su

期刊论文

含高温储能系统的微电网经济运行研究

罗 毅,张丽娟

期刊论文

Surface modification of titanium dioxide for electrophoretic particles

PENG Xuhui, LE Yuan, BIAN Shuguang, LI Woyuan, WU Wei, DAI Haitao, CHEN Jianfeng

期刊论文

Influence of mineral transformation on emission of particulate matters during coal combustion

LIU Xiaowei, XU Minghou, YU Dunxi, GAO Xiangpeng, CAO Qian, HAO Wei

期刊论文

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation

期刊论文

A novel light fluctuation spectrum method for in-line particle sizing

Shouxuan QIN, Xiaoshu CAI, Li MA

期刊论文

Independent cover meshless particle method for complex geotechnical engineering

Jianqiu WU, Yongchang CAI

期刊论文

Microdamage study of granite under thermomechanical coupling based on the particle flow code

期刊论文

Study on direct measurement method of vorticity from particle images

RUAN Xiaodong, FU Xin, YANG Huayong

期刊论文

Analysis of molten metal spreading and solidification behaviors utilizing moving particle full-implicit

期刊论文

Particle size distribution and shape control of Au nanoparticles used for particle gun

S. Kida, M. Ichiji, J. Watanabe, I. Hirasawa

期刊论文

Effect of adjusted mesoscale drag model on flue gas desulfurization in powder-particle spouted beds

期刊论文

Effect of particle size on coal char----NO reaction

Xiumin JIANG, Xiangyong HUANG, Jiaxun LIU, Chaoqun ZHANG

期刊论文

Crack detection of the cantilever beam using new triple hybrid algorithms based on Particle Swarm Optimization

Amin GHANNADIASL; Saeedeh GHAEMIFARD

期刊论文